Energetska učinkovitost |
Pod pojmom energetska učinkovitost podrazumijevamo učinkovitu uporabu energije u svim sektorima krajnje potrošnje energije: industriji, prometu, uslužnim djelatnostima, poljoprivredi i u kućanstvima. Energetska učinkovitost je suma isplaniranih i provedenih mjera čiji je cilj korištenje minimalno moguće količine energije tako da razina udobnosti i stopa proizvodnje ostanu sačuvane. Pojednostavljeno, energetska učinkovitost znači uporabiti manju količinu energije (energenata) za obavljanje istog posla – funkcije (grijanje ili hlađenje prostora, rasvjetu, proizvodnju raznih proizvoda, pogon vozila, i dr.). Važno je istaknuti da se energetska učinkovitost nikako ne smije promatrati kao štednja energije. Naime, štednja uvijek podrazumijeva određena odricanja, dok učinkovita uporaba energije nikada ne narušava uvjete rada i življenja. Nadalje, poboljšanje učinkovitosti potrošnje energije ne podrazumijeva samo primjenu tehničkih rješenja. Štoviše, svaka tehnologija i tehnička oprema, bez obzira koliko učinkovita bila, gubi to svoje svojstvo ukoliko ne postoje educirani ljudi koji će se njome znati služiti na najučinkovitiji mogući način. Prema tome, može se reći da je energetska učinkovitost prvenstveno stvar svijesti ljudi i njihovoj volji za promjenom ustaljenih navika prema energetski učinkovitijim rješenjima, negoli je to stvar kompleksnih tehničkih rješenja. Stoga je i prilikom davanja preporuka za poboljšanje energetske učinkovitosti najprije potrebno razmotriti navike potrošača i usmjeriti ih k savjesnijim izborima. Takve su mjere besplatne, a mogu donijeti doista značajne uštede. Tek kada je razina svijesti potrošača o potrebi učinkovite uporabe energije razvijena, potrebno je potrošača usmjeravati na nove, tehničke mjere za smanjenje potrošnje energije, o čijoj primjeni će se odlučiti na temelju njihove isplativosti, a čime će se uz energetsku podići i ekonomska učinkovitost. Poboljšana učinkovitost uporabe energije rezultirat će njezinom smanjenom potrošnjom, što vodi i smanjenju proizvodnje energije. Može se reći da svaki kWh energije koji ne potrošimo znači određenu količinu onečišćujućih plinova koji nisu ispušteni u atmosferu. Prema tome, učinkovitom uporabom energije podiže se kvaliteta vlastitog okoliša te se pridonosi globalnoj borbi za suzbijanje klimatskih promjena. Efikasno korištenje energije podrazumijeva primjenu energetski efikasnih materijala, uređaja, sustava i tehnologija koji su dostupni na tržištu, s ciljem smanjenja utroška energije uz postizanje istog efekta (toplinskog, rashladnog, rasvjete, procesa kuhanja, pranja...). Energija nije besplatna, na nju se troši dio kućnog (ili poslovnog) budžeta – svaki mjesec dolaze računi za električnu energiju, prirodni plin, toplinsku energiju iz gradske toplinske mreže, vodu. Kada se tome dodaju i troškovi goriva za vozila, mjesečni iznos može biti veoma značajan. Stoga je jasno da smanjena potrošnja energije uslijed njezine učinkovitije uporabe donosi i proporcionalne novčane uštede. |
Toplinska zaštita objekta |
ProzoriUkupni gubici kroz prozore iznose oko 50 posto toplinskih gubitaka zgrade, pa je jasno kolika je važnost energetski učinkovitih prozora u ukupnim energetskim potrebama zgrade. Gubici energije kroz prozore su obično i desetak puta veći od onih kroz zidove, stoga je preporuka za gradnju suvremene energetski učinkovite zgrade korištenje prozora s koeficijentom U manjim od 1,40 W/m2K. U skladu sa novim Tehničkim propisom, koeficijent prolaska topline za prozore i balkonska vrata može iznositi maksimalno U=1,80 W/m2K. Na starim zgradama koeficijent U prozora kreće se oko 3,00-3,50 W/m2K i više, europska zakonska regulativa propisuje sve niže i niže vrijednosti i one se danas najčešće kreću u rasponu od 1,40-1,80 W/m2K. Na suvremenim nisko energetskim i pasivnim kućama taj se koeficijent kreće između 0,80-1,40 W/m2K. LOW-E premaz Prema Tehničkom propisu o uštedi toplinske energije i toplinskoj zaštiti u zgradama, prozori s low-e staklima su obavezni u novim zgradama. Prozori s ovakvim staklima imaju koeficijente prijelaza topline oko 1,3 W/m2K što je svakako preporuka pri kupnji novih prozora prilikom renoviranja starih zgrada. Princip low-e stakala je da se na staklo nanese tanak sloj na bazi vanadijeva dioksida. Taj sloj u zimskim uvjetima potpuno propušta infracrvene zrake, a tijekom ljetnih mjeseci ponaša se poput filtra i spriječava prolaz toplinskog zračenja kroz staklo. Kako pritom potpuno propušta svijetlost u nekim slučajevima prozoru ne treba nikakvo sjenilo. Kemijskim sastavom i postupkom nanošenja tog sloja na staklo unaprijed određuje granicu na kojoj filter postaje propusan, granica je podesiva između 0°C i 70°C. Uštede na energiji su znatne primjenom ovih stakala u grediteljstvu a mogu dostići i do 50% energije za klimatizaciju. Prednost low-e stakla je i mogućnost proizvodnje stakla za točno određena klimatska područja, mijenjanjem udijela nanešenih materijala. Razlika u cijeni običnog i pametnog stakla je oko 20%, no energetska bi ušteda brzo nadoknađuje povećane troškove ulaganja. Prema podacima proizvođača mijenjanje starog jednostrukog prozora novim, dvostrukim (s U=1,3 W/m2K kao i Low-E premazom), isplaćuje se financijski kroz dvije sezone grijanja. Prozori do 1,1 W/m2K su u sličnom razredu isplativosti, dok oni s koeficijentom prolaza topline ispod 1 W/m2K postaju značajno skuplji u odnosu na uštedu te se koriste samo u izgradnji pasivnih kuća. Ukoliko ne postoji mogućnost zamjene starih prozora, najveće gubitke topline kroz loše brtvljenje prozorskog krila i okna prozora može se riješiti stavljanjem različitih brtvila. Ako materijal prozorske konstrukcije dobro vodi toplinu, uz energetske gubitke javljaju se i oštećenja izazvana kondenzatom, a javljaju se i gubici zračenjem topline iz toplije prostorije prema hladnijem okolišu. Poboljšanje toplinskih karakteristika moguće je postići na sljedeće načine:
Toplinska izolacijaToplinska izolacija smanjuje toplinske gubitke zimi, pregrijavanje prostora ljeti, te štiti nosivu konstrukciju od vanjskih uvjeta i jakih temperaturnih naprezanja. Također, sve vanjske konstrukcije objekta potrebno je kvalitetno toplinski zaštititi da bi zadovoljili današnje propise i gradili u skladu sa suvremenim smjernicama energetske učinkovitosti. Toplinski izolirana zgrada je ugodnija, produžuje joj se životni vijek i doprinosi zaštiti okoliša. Dobro poznavanje toplinskih svojstava građevinskih materijala jedan je od preduvjeta za projektiranje energetski učinkovitih zgrada. Toplinski gubici kroz građevni element ovise o sastavu elementa, orijentaciji i koeficijentu toplinske vodljivosti. Što je koeficijent prolaska topline manji, to je toplinska zaštita zgrade bolja. Toplinska se izolacija vanjskih zidova - fasada, loggia, stropova iznad otvorenih prolaza, stropova iznad negrijanih prostora i dr. najviše izvodi kao:
Na primjeru jednog fasadnog/vanjskog zida može se vidjeti koliki je doprinos toplinske izolacije uštedi energije za grijanje, zaštiti građevnog elementa od pregrijavanja, sprječavanju kondenzacije vodene pare, toplinskoj stabilnosti u ljetnom razdoblju i, najvažnije, udobnom i zdravom stanovanju. Na lijevom je dijagramu prikazan vanjski zid izrađen od šuplje opeke od gline d = 25 cm, bez toplinske izolacije, ožbukan s obje strane. Na desnom je dijagramu isti zid s vanjske strane izoliran stiroporom debljine 6 cm. Na unutrašnjoj strani vanjskog zida bez toplinske izolacije (dijagram na lijevoj strani – vanjska temperatura – 5 °C) u zimskom je razdoblju površinska temperatura (15.1 °C) niža od temperature zraka u prostorijama (+20 °C). Ohlađen zrak na zidovima struji od stropa prema podu uzrokujući nelagodu, osjećaj propuha i hladnoće. Do 90% gubitaka topline ljudskog tijela nastaje zračenjem topline. Što su razlike temperature između tijela i građevinskih elemenata koje ga okružuju veće, tijelo se brže hladi i ljudi se neugodno osjećaju. Da bi boravak bio ugodniji, prostorije se zagrijavaju na temperature zraka znatno više od normalnih +20 °C što značajno povećava potrošnju energenata, ali boravak u prostorijama i nadalje ostaje neudoban, razlike u temperaturama još su veće kao i sadržaj relativne vlage. Sve to pogoduje, u nepovoljnim mikroklimatskim uvjetima, mogućem nastanku površinske kondenzacije. Rješenje je pravilna toplinska izolacija vanjskih građevnih dijelova zgrade što bliže vanjskoj strani, koja omogućuje akumulaciju topline, odnosno njihovo zagrijavanje i manje razlike u temperaturama između njihovih unutrašnjih površina i zraka u prostorijama. Kod toplinsko izoliranih vanjskih zidova (dijagram na desnoj strani sa svega 6 cm toplinske izolacije a računate vanjske temperature od - 5°C), površinska je temperatura unutrašnje strane zida viša od +18°C, a temperatura zraka za ugodno i zdravo stanovanje u prostorijama ne treba biti viša od +20°C. Temperatura unutrašnje površine zida veća je od temperature rosišta zraka u prostorijama, a na površini se zidova ne stvara kondenzat. Vanjski je zid toplinski izoliran i može održavati potrebnu temperaturu na unutrašnjim površinama tijekom cijele godine, što znači da je zid toplinski stabilan. Toplinska stabilnost znači dobru toplinsku akumulaciju, sposobnost “spremanja topline“ u masivnom toplinski izoliranom vanjskom građevnom dijelu zgrade. Kada se isključi ili smanji grijanje ili se prostor ohladi (primjerice brzim provjetravanjem), tako se akumulirana toplina vraća natrag u prostorije i u kraćem se vremenskom periodu održava gotovo konstantna temperatura u prostorijama putem radijacije/zračenja topline s unutrašnje strane zagrijanog građevinskog elementa. Akumulacija topline vanjskih višeslojnih građevnih dijelova zgrade biti će to veća što se toplinsko izolacijski sloj nalazi bliže vanjskoj negrijanoj strani i što ima veći toplinski otpor, odnosno veću debljinu toplinske izolacije. Zato, kada je to moguće, treba izbjegavati ugradnju toplinske izolacije s unutrašnje strane, jer je sposobnost akumulacije topline u tom slučaju zanemariva uz mogućnost nastanka toplinskih mostova na sudarima unutrašnjih i vanjskih građevnih elemenata i nastanku kondenzata, prvenstveno na tim mjestima. Kod neizoliranih zidova/krovova toplina prolazi kroz konstrukciju u atmosferu i značajno povećava potrošnju energenata. U ljetnom razdoblju unutrašnje površine neizoliranih ili nedovoljno izoliranih vanjskih zidova/stropova imaju na južnoj i zapadnoj strani temperaturu višu od + 30 °C, posebno u večernjim satima. Često je i temperatura zraka u prostorijama viša od +30°C. Kod dobro toplinski izoliranih i toplinski stabilnih vanjskih zidova, površinska je temperatura na unutrašnjoj strani zida 22°C – 24°C. Boravak je zdrav i ugodan, a temperatura zraka u prostorijama, niti kod najvećih vrućina, ne prelazi ljeti ugodnih 24°C do 25°C, koliko se preporučuje i u klimatiziranim prostorima. Toplina se iz prostorija odvodi na toplinski izolirane hladnije masivne zidove. Zrak u prostorijama tijekom dana, a naročito poslijepodne ima višu temperaturu od zidova, koji su izvana toplinski izolirani i zato hladniji od unutrašnjeg zraka. Zato toplina može prelaziti na zidove i tako “hladiti” unutrašnje prostore. Noću je prolaz topline obrnut iz zidova u prostorije, zidovi se hlade, a topliji zrak kroz otvorene prozore izlazi vani.
|